SPECIFICATION FOR
THREE PHASE PAD-MOUNT DISTRIBUTION TRANSFORMERS

1.0 GENERAL PURPOSE
1.1 These specifications cover the electrical and mechanical features of a three phase, 60 hertz, liquid-filled (natural ester fluid), self-cooled, pad-mounted compartmentalized transformer for use in Healdsburg’s distribution system. All units submitted under this specification shall conform to all applicable provisions of the latest ANSI, ASTM, IEEE and industry standards unless excepted by provisions of this specification. All workmanship and material used on the equipment shall be first class, the best of their respective kinds and shall be in full accordance with the most modern manufacturing practices for distribution transformers.

1.2 If exceptions to this specification or the referenced industry standards are necessary, they must be expressly requested. Mere submission of non-conforming data shall not authorize a variance or exception. It shall be understood that it is the supplier's responsibility to ensure that all data submitted fully meets the requirements set forth herein. All units are subject to engineering approval provided solely by the City of Healdsburg.

2.0 INDUSTRY STANDARDS
The following industry standards shall be applied, were applicable, in the manufacturing, assembly, testing, and shipment of pad-mount transformers identified with this specification. Pad-mount transformers supplied under this specification shall further meet and/or exceed those applicable standards not stated herein but referenced by the below standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE C57.12.00</td>
<td>General Requirements for Liquid-Immersed, Distribution, Power, and Regulating Transformers</td>
</tr>
<tr>
<td>IEEE C57.12.34</td>
<td>Standard Requirements for Pad-Mounted, Compartmental-Type, Self-Cooled Three-Phase Distribution Transformers (2500 kVA and Smaller) High-Voltage: 34500 GrdY/19920 Volts and Below; Low Voltage: 480 Volts and Below</td>
</tr>
<tr>
<td>IEEE C57.12.70</td>
<td>Terminal Markings and Connections for Distribution and Power Transformers</td>
</tr>
<tr>
<td>IEEE C57.12.80</td>
<td>Standard Terminology for Power and Distribution Transformers</td>
</tr>
<tr>
<td>IEEE C57.12.28</td>
<td>Pad-mounted Equipment - Enclosure Integrity</td>
</tr>
<tr>
<td>IEEE C57.91</td>
<td>Guide for Loading Mineral-Oil-Immersed Transformers</td>
</tr>
<tr>
<td>IEEE 386</td>
<td>Standard for Separable Insulated Connector Systems for Power Distribution Systems above 600V</td>
</tr>
<tr>
<td>ASTM D445</td>
<td>Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids</td>
</tr>
<tr>
<td>ASTM D924</td>
<td>Standard Testing Method for Dissipation Factor and Relative Permittivity</td>
</tr>
</tbody>
</table>
3.0 RATINGS

3.1 Transformers covered by this specification shall be the standard KVA ratings of 75, 150, 300, and 750 with the high voltage windings having a basic lightning impulse insulation level (BIL) of 95KV.

3.2 For three-phase transformers, the high voltage winding shall be closed DELTA and rated for 12,000 Volts line-to-line with the secondary winding configured Grounded-WYE and voltage rating of either 480/277V, 240/120V, or 208/120V as noted on the bid sheet. The transformer’s core shall be comprised of three legs. Secondary windings shall have a minimum BIL rating of 30kV.

3.3 Transformers supplied shall have an average winding temperature rating of 65/75°C. The average winding temperature and oil temperature near the top of the transformer tank shall not exceed 65°C when loaded at base kVA rating. Additionally, under continuous operations at the transformer’s rated kVA, no hot-spot windings shall exceed a 90°C rise over ambient. The transformer shall provide an additional 12% capacity at the 75°C rating.

3.4 Transformer percent impedance values shall not be less than the following:
 - 75 kVA 2.7%
 - 150 kVA 3.1%
 - 300 kVA 3.1%
 - 750 kVA 4.4%

Units with impedance values less than the listed values may be rejected by the City. All other impedance requirements, per IEEE C57.12.34 and IEEE C5712.00, shall be met. Identically rated transformers shall be suitable for parallel operation and shall be built to industry tolerance for impedance per IEEE C57.12.00.

4.0 CONSTRUCTION

4.1 The enclosure shall be a secured compartmental design with the primary (high-voltage) compartment separated from the secondary termination compartment by a full length, solid metal barrier. When viewed from the front, the low-voltage compartment shall be on the right. Each compartment shall have a door that is constructed so as to provide access to the high-voltage compartment only after the door to the low-voltage compartment has been opened. There shall be one or more additional fastening devices that must be removed before the high-voltage door
can be opened. All hinge pins and associated barrels shall be constructed of corrosion-resistant material, passivated AISI® Type 304 or the equivalent.

4.2 The manufacturer shall have an established welding certification and quality assurance program in place for all performed welding in the manufacturing of the transformer.

4.3 There shall be separate doors covering the primary and secondary compartments. Door handles of cast material shall not be permitted. A tamper-resistant design is required, and shall be in accordance with the latest versions of IEEE C57.12.28. Security of the cabinet shall include the use of penta-head bolts and padlocks. The secondary door catches shall be caught at three points to withstand tampering and forced entry.

4.4 Doors shall include latches or bars, which secure the doors in the fully open position.

4.5 In order to eliminate gaps between the transformer base and transformer pad openings, the transformer cabinet and tank shall be dimensionally sized to overlap the pad opening detailed in Healdsburg’s Construction Standards; Precast 3PH Pad for Pad-Mount Transformer Installs (see Attachment A). Radiators may overhang the pad dimensions, and shall be clearly shown in the final drawings.

4.6 The coating system shall be in accordance with the latest version of IEEE C57.12.28 and provide excellent protective characteristics. The finish color shall be Munsell Green No. 7GY3.29/1.5 (reference ASTM D1535 or C57.12.28).

4.7 The tank shall be of sufficient strength to withstand a gage pressure of 7 psig without permanent distortion and 15 psig without rupturing or affecting cabinet security as described in IEEE C57.12.28. An automatic pressure relief device shall be provided that will operate to relieve tank pressure at approximately 10 +/-2 PSIG and reseal at 6 PSIG minimum, in accordance with IEEE C57.12.34.

4.8 The construction of the unit shall be such that it can be lifted, skidded, or slid, or any combination of these, into place on the mounting surface without disturbing the high-voltage or low-voltage cables. The transformer shall be provided with lifting provisions permanently attached and arranged on the tank to provide a distributed balanced lift in a vertical direction for the completely assembled transformer and shall be designed to provide a safety factor of five. Lifting provisions shall be in compliance with the latest revision of IEEE C57.12.34.

4.9 The transformer case shall have metal drip shields installed under each fuse position to catch any oil that may fall onto the high-voltage bushing inserts or elbows.

4.10 Tank grounding provisions shall be in accordance with IEEE C57.12.34 Tank grounding provision shall comply with IEEE C57.12.34, Section 8.11 and will accommodate the installation
of a #2 AWG stranded copper ground bus. The connectors shall be installed to support the bus at a distance of three inches from the face of the transformer.

4.11 The ground pads shall be at sufficient height so that operating personnel may attach personal ground clamps to the bus, using an eight-foot hot stick held at waste level, without interference from the transformer sill or other accessories. The grounding pads shall be no closer than four inches from the tank sidewalls or any compartment barriers.

4.12 The core and coil shall be vacuum processed to ensure maximum penetration of insulating fluid into the coil insulation system. While under vacuum, the windings will be energized to heat the coils and drive out moisture, and the transformer will be filled with preheated filtered degassed insulating fluid.

4.13 The core shall be manufactured from burr-free, grain-oriented silicon steel and shall be precisely stacked to eliminate gaps in the corner joints. The coil shall be insulated with B-stage, epoxy coated, diamond pattern, insulating paper, which shall be thermally cured under pressure to ensure proper bonding of conductor and paper. Coils shall be either aluminum or copper.

4.14 The roof the enclosure shall be sloped to improve moisture run-off. The slope of the roof shall be arranged such that any moisture runs away from the enclosure doors (directs flows toward the back or sides).

5.0 LOW-VOLTAGE TERMINATIONS

5.1 The low voltage bushing arrangement and clearances shall be in accordance with the staggered configuration shown in Figure 8(a), of IEEE C57.12.34. The centerline height of the lowest, low-voltage bushing shall be in compliance with Figure 12 of IEEE C57.12.34.

5.2 The low voltage neutral terminal shall be a fully insulated bushing. A grounding pad shall be provided near the low voltage neutral terminal. No grounding strap will be installed.

5.3 Transformers shall be provided with secondary connectors as described in the table below:

<table>
<thead>
<tr>
<th>KVA Rating</th>
<th>NEMA Spade</th>
</tr>
</thead>
<tbody>
<tr>
<td>75kVA thru. 300kVA</td>
<td>6-Hole NEMA Spade</td>
</tr>
<tr>
<td>750kVA</td>
<td>8-Hole NEMA Spade</td>
</tr>
</tbody>
</table>

The transformer shall be provided with tin-plated spade-type bushings for vertical takeoff.

5.4 Bushing supports shall be provided for transformers with more than 4 holes. Bushing supports shall be affixed to the cabinet sidewalls; tank-mounted supports mountings are not acceptable. Supports shall be installed in a manner that does not detract from the minimum useable number of holes.
5.4 Low-voltage bushing shall be insulated from the transformer tank with 1.2kV bushings for all secondary ratings.

5.5 Drawings shall be submitted detailing terminal support design.

6.0 HIGH-VOLTAGE TERMINATIONS

6.1 Transformers rated shall be configured as feed-thru or looped transformers. This requires six (6) high-voltage bushings capable of passing 200amps continuously and 330amps for eight (8) hours. Bushing shall be capable of withstanding 10,000 amperes symmetrical for ten cycles.

6.2 All high-voltage bushing well shall be rated 15kV (8.3/14.4 kV), 200 ampere continuous, 95kV BIL, and a minimum 11kV corona extinction. Bushing wells shall be supplied with 200amp load break inserts installed and compliant with the latest revision of IEEE 386. The bushing shall be externally removable and be supplied with a removable stud. Bushing inserts for all transformers shall be rated 8.3/14.4kV and shall be Elastimold 1601A4, Cooper LB1215, or Hubbell 9U02AAB001 only.

6.3 For looped transformers the arrangement of parking stands and high voltage bushing wells shall be provided in accordance with Figure 14(a) of IEEE C57.12.34. Dimension K shall be 6.5 inches. The high-voltage bushing heights shall be in accordance with Figure 12 (27 inches) minimum dimensions of IEEE Std C57.12.34 standard.

6.4 Bushing inserts shall be supplied with a cover as protection from dust, paint over-spray and/or other possible contamination or abrasion that may occur during manufacture, shipping, or storage.

7.0 PROTECTIVE EQUIPMENT

7.1 Each transformer shall be supplied with one oil-immersed partial range current limiting fuse(s) per phase. The current limiting fuse manufacturer and catalog information shall be identified on the transformer nameplate. The bayonet fuses shall be installed in series with current limiting fuses, inserted between the transformer winding and the high voltage bushing.

7.2 These bayonet fuses shall be installed in series with the current limiting fuses, inserted between the transformer winding and the high voltage bushing. There shall be a minimum of 4 inches between a fuse holder and the nearest barrier, device, or obstruction excluding parking stands.

7.3 The Bay-O-Net fuse shall be easily removable with a hot stick from the ground position without interference with the cabinet in any manner. The transformer case shall have a metal lip
installed under each fuse position to catch any oil that may fall onto the high-voltage bushing inserts or elbows.

7.4 The vendor shall provide transformers with the Bay-O-Net fuse links and current limiting fuses. Fuse substitutions from the above table must be noted at time of bid and approved by Healdsburg.

<table>
<thead>
<tr>
<th>Transformer kVA</th>
<th>Cooper Dual-Sensing Bay-O-Net Fuse Rating (15.5kV)</th>
<th>Cooper ELSP Backup Current Limiting Fuse Size (15.5kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>15A (C08)</td>
<td>80A (CBUC15080C100)</td>
</tr>
<tr>
<td>150</td>
<td>25A (C10)</td>
<td>100A (CBUC15100C100)</td>
</tr>
<tr>
<td>300</td>
<td>50A (C12)</td>
<td>125A (CBUC15125D100)</td>
</tr>
<tr>
<td>750</td>
<td>65A (C14)</td>
<td>2 x 125A (CBUC15125C100)*</td>
</tr>
</tbody>
</table>

* 750KVA transformers require parallel application of current limiting fuses.

7.5 Bay-O-Net assembly shall include a valve that shuts when the inner holder is removed from the housing and minimize oil from spilling out of the Bay-O-Net assembly (Cooper Flapper valve or City approved equivalent)

8.0 TRANSFORMER LABELS AND NAMEPLATE

8.1 High-voltage and low-voltage bushings shall be marked by stenciled lettering on the tank. Decals will not be accepted. Additionally, the correct bayonnet fuse type, size, and phase identifier (F1, F2, F3) must be stenciled on the tank wall adjacent to the bayonnet fuses. In the vicinity of the bayonnet fuse the following warning will be stenciled; “CAUTION: VENT TANK BEFORE REMOVING FUSES”

8.2 The tank shall be complete with an anodized aluminum laser engraved nameplate. Nameplate shall be according to the requirements of IEEE C57.12.00, C57.154 with the following clarifications.

- Rated average winding temperature rise
- Rated winding hottest spot temperature rise
- Rated top oil temperature rise
- BIL rating
- Tested impedance shall be listed.
- Total weight in pounds shall be indicated for each transformer.
- Volume in gallons of insulating fluid shall be indicated.
- Type of insulating liquid by generic and trade name
- Nameplate shall contain a statement specifying the PCB content was less than 1ppm at time of manufacture.
- Type of Insulation system with reference to the applicable IEEE standard.
- Date of manufacture shall be clearly displayed on the nameplate.
8.3 The transformer will be marked with a permanent decal designating the brand name of the natural ester fluid and stipulating that the fluid is biodegradable.

9.0 DIELECTRIC OIL

9.1 The transformer shall be shipped completely filled with a dielectric (insulating) fluid that has received prior approval by Healdsburg’s engineer. The Bidder shall specify the brand and name of fluid that will be supplied.

9.2 Upon delivery, there shall be no residue of the dielectric fluid on the transformer, other than within the tank itself. This includes but not limited to residue resulting from the filling process, fluid that might be released from the pressure release devices during transportation, or fluid that might drip from wetted seals or gaskets.

9.3 The insulating fluid to be supplied shall be identified in the bid document shall be:

- Natural Ester Fluid: Natural ester fluid (vegetable based) in compliance with the latest revision of ASTM D6871. The ester fluid shall be Cooper Envirotemp® FR3TM fluid or approved equivalent. Approval of ester-based fluids shall be obtained in writing from Healdsburg’s Engineer, or
- Alternative ester-based fluids must be fully miscible and compatible with Cooper Envirotemp® FR3TM fluid and mineral oil dielectric and shall meet the following minimum requirements:
 - Dielectric Constant, ASTM D924 @25 C >3
 - Dielectric Breakdown, ASTM 1816 (0.04” gap, after filling) >25kV
 - Flash and Fire Point: >300 C
 - Viscosity, ASTM D445 @40 C <=45cSt

9.4 Natural ester fluid shall be shown to retain greater than 90% of its dielectric strength and fire point when contaminated with mineral oil fluid in percentages less than 7.5% by weight. The fluid shall retain electrical, chemical and physical characteristics with water content up to 400mg/kg so as to perform acceptably in service as a transformer dielectric. The fluid shall be certified to be biodegradable, non-toxic, non-carcinogenic, and non-bioaccumulating. Accelerated aging tests shall demonstrate that the fluid will extend the life of the transformer paper insulation by more than two times as compared to mineral oil dielectric. Certified test results, and/or EPA reports, shall be submitted to Healdsburg as verification of fluid characteristics and performance. A Material Safety Data Sheet for the alternate natural ester fluid shall be submitted to Healdsburg.

9.5 The dielectric coolant shall be listed less-flammable fluid meeting the requirements of National Electrical Code Section 450-23 and the requirements of the National Electrical Safety Code (IEEE Std C2-2012 standard), Section 15. The dielectric coolant shall be non-toxic*, non-
bioaccumulating and be readily and completely biodegradable per EPA OPPTS 835.3100. The fluid shall be certified to comply with the US EPA Environmental Technology Verification (ETV) requirements, and tested for compatibility with transformer components.

9.6 The properties and characteristics of the natural ester dielectric shall be such that equipment used for handling of mineral oil dielectric fluid, can be used to transfer, filter, and dry the fluid, although processing time might be extended.

9.7 The dielectric fluid shall be certified to be free of polychlorinated biphenyls, i.e., non-PCB.

9.8 Dielectric fluids shall be properly prepared, dried and filtered before adding to clean dry transformers. Natural ester dielectric fluid shall not be contaminated with mineral oil dielectric residue, such a may remain in transfer piping, or filter equipment if improperly purged. After filling, transformer shall be sealed and topped with a nitrogen blanket.

10.0 MISCELLANEOUS

10.1 A suitable marking inside the tank shall indicate the correct oil level at 25°C on all units.

10.2 Audible sound levels for each unit shall be according to the requirements of NEMA TR-1, Section 0.05. Tests shall be performed per IEEE C57.12.90, Section 13.

10.3 All transformer supplied shall be in accordance with NEMA standards for Radio Influence Voltage (RIV) and Telephone Influence Factor (TIF).

10.4 Units shall be mounted on a solid top wooden pallet, or other approved pallet, for ease of removal with a forklift truck from the side of the trailer. Pallets shall be of adequate size and construction to reduce risk of damage to transformers during loading, transport and unloading. Pallets shall not be modified during shipment.

10.5 Units shall be protected during shipment so as to prevent damage to all exterior surfaces. All corners should be protected with a reinforced edging material to prevent chafing. Units showing damage to the paint finish are subject to rejection by the City and corrective action by the manufacturer.

10.6 A hand hole for current limiting fuse replacement shall be provided, the minimum size shall be 8½ inches x 17 inches. It shall be the largest standard factory size available for the tank size. It shall be secured against tampering as required in C57.12.28 or C57.12.29 as appropriate. Hand-holes are not required when the entire cover functions as a hand-hole.

11.0 ACCESSORIES

11.1 The following accessories will be provided with all transformers;

- Each transformer shall be equipped with a non-resettable device which detects and provides external indication of internal transformer faults, and also incorporates pressure
relief functionality. Healdsburg’s approved device is manufactured by IFD Corporation, no substitutions will be accepted. The device will be mounted inside the low-voltage compartment.
- Metal drip shield for bayonet fuses.
- One (1) inch upper filling plug and filter press connection.
- Temperature label (American Thermal Instruments I-2093 or Omega Engineering Inc. 4A-190) placed 1” below the top oil line in the low-voltage compartment.
- High voltage warning and danger signs per NEMA 260-1996 (R2004) figure 4-3 and figure 4-4 (bilingual).

11.2 Units rated 300 kVA and above shall be supplied with the following additional accessories:
- Liquid level gauge located near the bayonet fuses
- Top oil thermometer with drag hand (drag pointer) indicating the maximum top oil temperature.

12.0 TESTING

12.1 The applicable Design Tests in accordance with IEEE C57.12.00, C57.12.90, and C57.12.34 shall be successfully performed for all designs prior to shipment. The reports substantiating that the design tests were successfully performed must be kept on file at the production facility for at least three years after delivery to Healdsburg.

12.2 Each transformer shall have passed the following routine tests in accordance with IEEE C57.12.34, C57.12.00, and C57.12.90 and ASTM requirements;
- Ratio tests
- Polarity and phase relation tests
- No-load losses and excitation current tests
- Load losses and impedance voltage
- Low frequency dielectric test
- In addition, on units larger than 300kVA, a routine impulse test shall be run in accordance with IEEE C57.12.90 section 10.4.

12.3 The Bidder shall provide test results from the fluid manufacturer of the ester based fluids, as proof that the fluid meets the full requirements of this specification.

12.4 All costs incurred by the supplier as a result of rejection of material shall be considered incidental to the work. No separate payment will be made.

13.0 DESIGN DATA SUBMITAL
13.1 For each transformer the following data shall be submitted, certified as correct, prior to shipment. This data shall also be submitted with any bid proposal in a Microsoft Excel format

- Rating in kVA for 65°C rise and 75°C rise
- High-voltage rating
- Low-voltage rating
- Data required per IEEE standards
 a. Winding I^2R Losses
 b. Winding Eddy Losses
 c. Stray Losses
 d. Core Losses
 e. Guaranteed Average Winding Rise
 f. Rated Average Winding Rise
 g. Rated Hot Spot Rise
 h. Rated Top Oil Rise
 i. Rated Ambient Temperature
 j. High-voltage Winding Conductor
 k. Low-voltage Winding Conductor
 l. Weight of Core & Coils
 m. Weight of Enclosure & Fittings
 n. Dielectric Fluid Type
 o. Dielectric Fluid Volume
- Ampacity and identity of limiting item excluding the winding temperature rises or loss of life:
 a. High Voltage system
 b. Low Voltage system
- Percent Regulation at 80% power factor and rated load
- Percent Regulation at 100% power factor and rated load
- Percent Impedance
- Efficiency in accordance with DOE requirements (calculated at 50% nameplate loading, core loss corrected to 20°C, and load loss corrected to 55°C)
- Winding Insulation Material
- Core & Coil Material
- Winding Arrangement
- Short Circuit Withstand
- RIV level at 110% rated voltage
- Test Voltage Applied to high-voltage winding on dielectric tests
- Test Voltage Applied to low-voltage winding on dielectric tests

13.2 Final Drawings and Manuals for each piece of equipment supplied shall be submitted, in PDF format, to Healdsburg for review and approval prior to the manufacturing or shipment. These shall include:

- Detailed drawing of the unit showing final overall dimensions including radiators, foot print dimensions, clearance requirements, and weight.
- Devices including bushing and parking stand locations, fuses, relief valves, drain valves, and secondary terminations and supports (as applicable), etc.
• Parts list including catalog numbers.
• Nameplate.
• Installation, Maintenance, and Operation Instructions.
1) Total cost of transformers will be determined by combining the unit cost with the cost of a total loss evaluation. Unit cost shall include all taxes and shipping.

2) Description: (2ea) City ID 285-205-00031, 750 KVA, 277/480

 Note: All transformers shall be shipped FOB City of Healdsburg in open containers providing for side unloading.

<table>
<thead>
<tr>
<th>(2ea)</th>
<th>750 KVA</th>
<th>277/480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bid Unit Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales Tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Bid Unit Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts No Load Loss x $7.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts Winding Loss x $2.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluated Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total bid per item Qty.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Bid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total bid written in words __

Mfg. Brand Bid: __

Delivery Date _______________ FOB, 550 Westside Rd. Healdsburg, CA 95448

Business Name: ______________________ Phone: ______________________
Address: __________________________ Fax: ____________________________

__

SIGNED BY: ______________________
Date: __________________________
City of Healdsburg

Three Phase Pad-Mount Transformers

<table>
<thead>
<tr>
<th>City ID</th>
<th>Inventory Number</th>
<th>KVA</th>
<th>Primary Voltage</th>
<th>Secondary Voltage</th>
<th>Phase</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>35230</td>
<td>285-205-00015</td>
<td>75</td>
<td>12,000</td>
<td>120/240</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35250</td>
<td>285-205-00017</td>
<td>75</td>
<td>12,000</td>
<td>208Y/120</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35240</td>
<td>285-205-00016</td>
<td>75</td>
<td>12,000</td>
<td>480Y/277</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35260</td>
<td>285-205-00020</td>
<td>150</td>
<td>12,000</td>
<td>120/240</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35280</td>
<td>285-205-00024</td>
<td>150</td>
<td>12,000</td>
<td>208Y/120</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35270</td>
<td>285-205-00022</td>
<td>150</td>
<td>12,000</td>
<td>480Y/277</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35310</td>
<td>285-205-00032</td>
<td>300</td>
<td>12,000</td>
<td>208Y/120</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35300</td>
<td>285-205-00030</td>
<td>300</td>
<td>12,000</td>
<td>480Y/277</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35312</td>
<td>285-205-00035</td>
<td>75</td>
<td>12,000</td>
<td>208Y/120</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
<tr>
<td>35305</td>
<td>285-205-00031</td>
<td>75</td>
<td>12,000</td>
<td>480Y/277</td>
<td>Three</td>
<td>Pad-Mount</td>
</tr>
</tbody>
</table>